# Painéis de poliestireno expandido (EPS) revestidos com argamassa armada: Avaliação de desempenho

Trabalho de Conclusão de Curso Engenharia Civil Junho de 2021





Letícia Batista Araújo de Lima Matheus Nunes Moreira Rodolfo Cervelle Santos Thomas Hideki Kuninari

Prof. Ms. Fabiola Rago Beltrame

# Introdução e contextualização

O atual cenário da Construção Civil no Brasil

#### Mercado em ascensão

2020: Cerca de 140 mil novos postos de trabalho criados

2021: Projeção de maior crescimento desde 2013

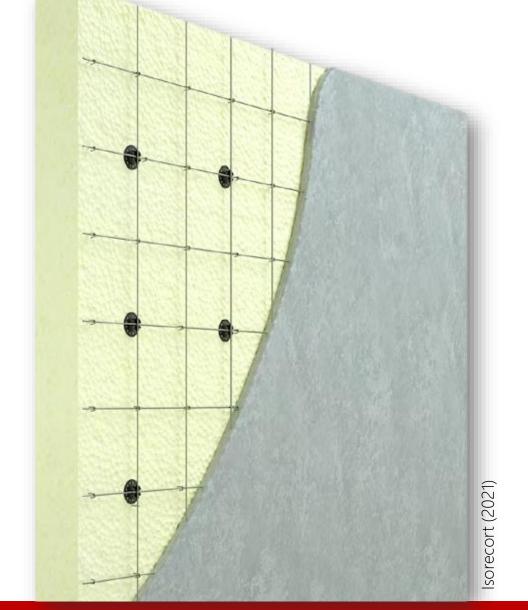
#### Foco em sustentabilidade

Crescente demanda por cimento (consumo mensal médio acima de 5 milhões de toneladas em 2020)

Acordo de Paris: Compromisso mundial na busca de alternativas para reduzir a emissão de GEE

#### Déficit habitacional

Déficit em cerca de 5,8 milhões de moradias

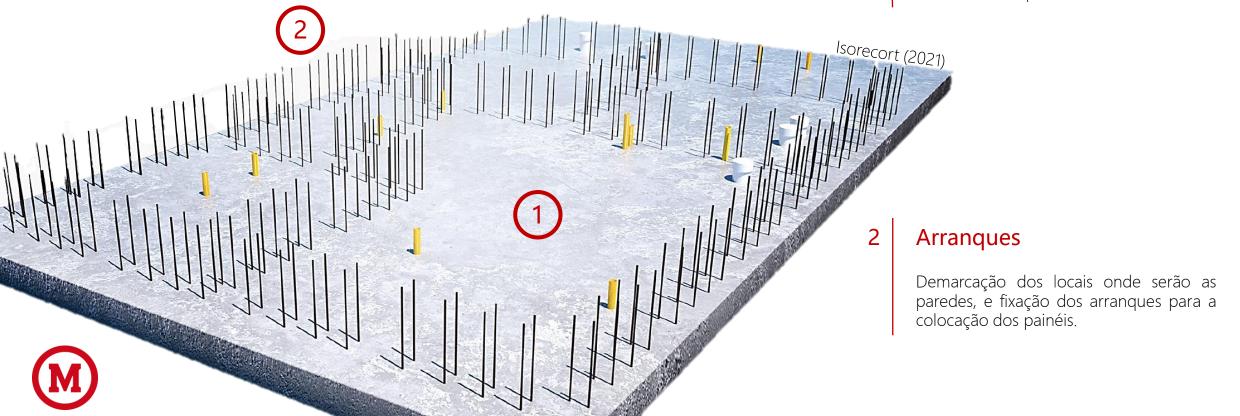

Cerca de 25 milhões de habitações com inadequações

Oportunidade e necessidade de implementar soluções sustentáveis e de alta produtividade!



### Características do sistema construtivo

- ✓ Monopainel® da fabricante Isorecort
- ✓ Densidade entre 10 e 12 kg/m³
- ✓ Placa de EPS de 8 cm
- ✓ Telas metálicas Q61 (0,61 cm²/m) travadas entre si
- ✓ Revestido com 3 cm de argamassa em cada face
- ✓ Aditivo retardante à chama






Etapas do sistema construtivo

### 1 Fundação

Preparação do terreno, locação da obra e execução da fundação, preferencialmente em radier ou sapata corrida.



### Etapas do sistema construtivo

### 3 Montagem dos painéis

Posicionamento dos painéis sobre os arranques da fundação de acordo com o projeto arquitetônico.

#### Abertura dos vãos

Demarcação com caneta dos vãos de portas e janelas, e posterior corte das telas de aço e das placas de EPS.





### Etapas do sistema construtivo



### Instalações

Abertura de sulcos com soprador de ar quente e passagem das tubulações de instalações elétricas e hidrossanitárias.



#### Revestimento

Projeção de 3 cm de argamassa em cada face do painel, sendo estas em ao menos duas camadas.



# Objetivos de pesquisa

Um passo a frente no estado da arte

### Desconfiança popular

EPS culturalmente reconhecido como um material frágil e ornamental

#### Embasamento normativo

Não existem normas que dão respaldo a projetistas e construtores

### Limitações técnicas

SINAT Nº11 abrange edificações multifamiliares de até dois pavimentos

Avaliar o desempenho dos painéis de EPS revestidos com argamassa armada como sistema construtivo

Comparar o sistema construtivo com método convencional de alvenaria estrutural



# Avaliação de desempenho dos painéis de EPS

### Tópicos de estudo



#### Desempenho sustentável

É possível reduzir a emissão de GEE?



#### Análise financeira

É mais barato ou mais caro?



### Desempenho térmico

Atende aos requisitos de conforto térmico?



### Análise de produtividade

É realmente mais rápido?



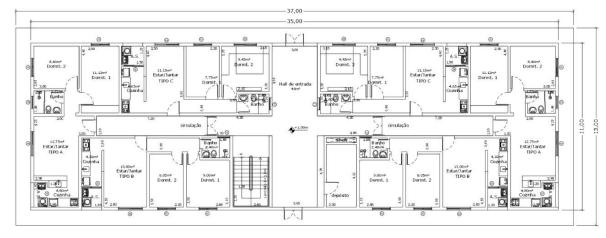
#### Desempenho estrutural

O método é seguro estruturalmente? Até quantos pavimentos é possível construir?

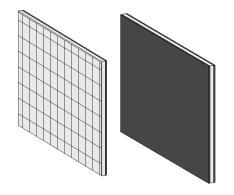


# Projeto protótipo

Modelagens arquitetônicas e estruturais em BIM


### Projeto arquitetônico

Edificação multifamiliar


Habitação de interesse social

3 pavimentos com 6 habitações cada

1155m² de área construída



Planta baixa



Painéis de EPS



Alvenaria estrutural



Projeto protótipo



# Desempenho térmico

Revisão bibliográfica

#### O EPS

O EPS é um excelente isolante térmico pois mantém permanentemente uma grande quantidade de ar dentro das suas células

(ACEPE, 2020)

#### A parede com painel de EPS

O isolamento térmico se aplica para o frio e para o calor pois as temperaturas externas e internas da residência se tornam independentes

Machado e Pinto (2001 *apud* SIQUEIRA, 2017)





# Desempenho térmico

### Metodologia de pesquisa

### 1 Metodologia da NBR 15575

Análise de uma unidade habitacional
Temperaturas de verão e de inverno
Ambos os métodos construtivos

#### 2 Condutividades térmicas

Cálculo da condutividade térmica equivalente para cada sistema:

Parede de painéis de EPS: 0,565 W/m.K

Parede de alvenaria: 5,454 W/m.K

### S | Simulações em MEF

Utilização do *software* Ansys

Classificação dos níveis de desempenho térmico (NBR 15575)





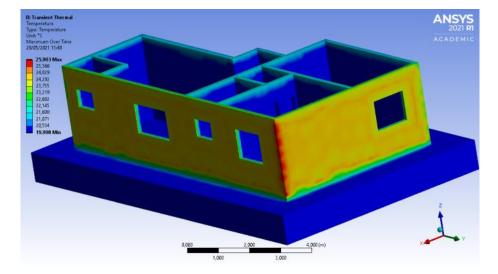
# Desempenho térmico

### Resultados da pesquisa

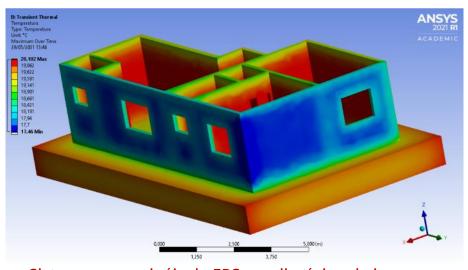
#### 1 | Alvenaria estrutural

Diferenças de temperatura externa e interna:

8,6°C no verão e 8,9°C no inverno


Nível de desempenho térmico superior (NBR 15575-1)

#### 2 | Painéis de EPS


Diferenças de temperatura externa e interna:

9,2°C no verão e 9,5°C no inverno

Nível de desempenho térmico superior (NBR 15575-1)



Sistema com painéis de EPS em dia típico de verão



Sistema com painéis de EPS em dia típico de inverno





### Revisão bibliográfica

#### Emissão de CO2

EPS como solução sustentável pois apresenta baixa emissão de carbono

Fator de emissão de CO2 de apenas 3,29 kg por kg de material

Hammond e Jones (2011)

### Reaproveitamento

Material reciclável e facilmente encontrado em aterros e lixões

Diminui a necessidade de produção de matéria prima para a fabricação dos painéis

Santos et. al (2009)





Metodologia de pesquisa

1 | Quantitativo de materiais

Levantamento a partir dos modelos desenvolvidos em BIM no *software* Revit 2 | Emissão unitária de CO2

Obtidas pelas seguintes referências:

CECarbon (2020) e Maciel (2016)

Emissão total de CO2

Estimativas de emissões para ambos os métodos construtivos dos insumos diferentes





### Resultados da pesquisa

#### **Atividade**

Fundação em radier

Execução das lajes

Execução das paredes estruturais

Emissão total de carbono

#### Alvenaria estrutural (kg de CO<sub>2</sub>)

124.034

48.496

72.509

245.029

#### Painéis de EPS (kg de CO<sub>2</sub>)

92.888

48.496

34.261

175.646

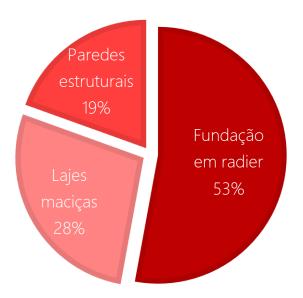
28%

de redução total na emissão de CO<sub>2</sub> para a execução da obra

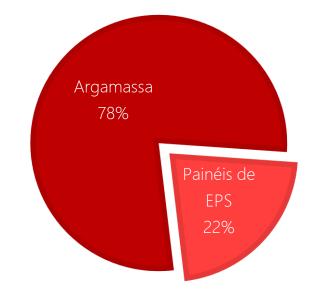
52%

de redução na emissão de CO2 para a execução das paredes

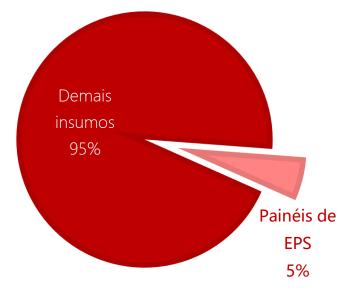
32%


de redução na emissão de CO2 para a execução da fundação






### Resultados da pesquisa


Emissão de CO2 total da obra com painéis de EPS



Emissão de CO<sub>2</sub> das paredes estruturais com painéis de EPS



Emissão de CO2 total da obra com painéis de EPS







# Desempenho físico-financeiro

### Revisão bibliográfica

#### Custo

Souza (2009):

Alvenaria estrutural: R\$670/m<sup>2</sup>

Painéis de EPS: R\$682/m<sup>2</sup>

EPS Brasil (2014 apud ELIBIO, 2019):

Redução de 6% a 8% no custo global

#### Produtividade

Souza (2009):

Alvenaria estrutural: 16,86 h/m<sup>2</sup>

Painéis de EPS: 13,34 h/m<sup>2</sup>

EPS Brasil (2014 apud ELIBIO, 2019):

Redução de 20% no tempo gasto





# Análise da produtividade

### Metodologia de pesquisa

### 1 | Tempos despendidos em Mão de Obra

Obtidos pelas seguintes referências:

Tabela de composição de custos (SIURB)

Souza (2009)

### Composição dos Tempos

#### Painéis de EPS:

Fixação e prumos do painéis

Instalação de reforços nos vãos abertos dos painéis

Colocação dos conectores

Projeção da argamassa

#### Alvenaria estrutural:

Assentamento dos blocos de concreto

Aplicação do graute

Instalação de barras de aço nas amarrações de encontro

Aplicações de chapisco, emboço e reboco interno e externo





# Análise da produtividade

### Resultados da pesquisa

| Método Construtivo              | Tempo gasto para a produção<br>de 1m² de parede (horas) |  |  |
|---------------------------------|---------------------------------------------------------|--|--|
| Alvenaria estrutural (Pedreiro) | 2,82                                                    |  |  |
| Alvenaria estrutural (Servente) | 3,02                                                    |  |  |
| Painéis de EPS (Pedreiro)       | 1,41                                                    |  |  |
| Painéis de EPS (Servente)       | 1,47                                                    |  |  |

50%

de redução no tempo de execução das paredes estruturais





# Análise financeira

### Metodologia de pesquisa

1 Quantitativo de materiais

Levantamento a partir dos modelos desenvolvidos em BIM no *software* Revit 2 | Estimativas de custos

Obtidos pelas seguintes referências:

Tabela de composição de custos (SIURB)

Fabricantes

3 Custos totais

Estimativa de custo para ambos os sistemas construtivos





# Análise financeira

### Resultados da pesquisa

| Atividade           | Alvenaria estrutural | Painéis de EPS   |
|---------------------|----------------------|------------------|
| Fundação em radier  | R\$ 412.828,08       | R\$ 306.287,44   |
| Paredes estruturais | R\$ 426.239,47       | R\$ 450.243,58   |
| Itens em comum      | R\$ 378.210,07       | R\$ 378.210,07   |
| Custo Total         | R\$ 1.217.277,62     | R\$ 1.134.741,10 |

7%

de redução no custo total da obra

35%

de redução no custo da fundação





### Revisão bibliográfica

### Fundações menos solicitadas

Peso próprio da estrutura drasticamente reduzido devido a aplicação do EPS

### Limitações construtivas

Até 4 pavimentos

Bertoldi (2007)

Até 2 pavimentos

(SINAT N°11, 2014)

#### Hiato de conhecimento

Há poucos estudos e análises sobre o sistema estudado, e quase nenhuma avaliação sobre o desempenho estrutural





### Metodologia de pesquisa

### 1 | Material Hipotético Equivalente

Características do material, com resistências minoradas em 1,4

 $y3 = 878,28 \text{ kg/m}^3$ 

 $fck_{eq} = 7,65 MPa$ 

 $E_{eq} = 11.143 \text{ MPa}$ 

### Carregamentos absolutos

Carregamentos permanentes e variáveis, majorados em 1,4 (NBR 16868 e NBR 6118)

Lajes representam 55,50%, Paredes representam 44,5%, do peso próprio da estrutura.

### Simulações em MEF

Utilização do *software* Ansys

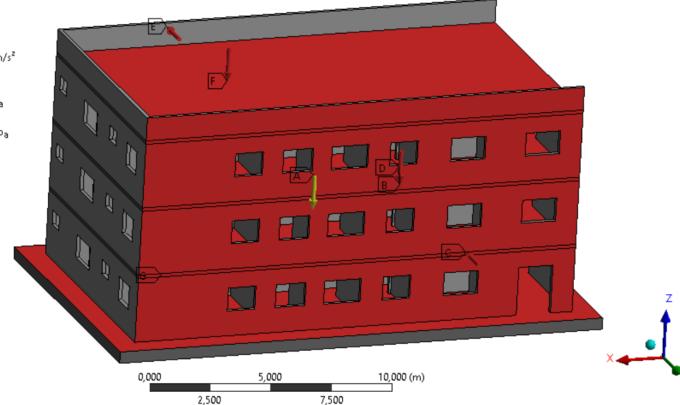
Simulação otimizada devido simetria do edifício

31.661 nós de malha

Lajes maciças com 15 cm de espessura



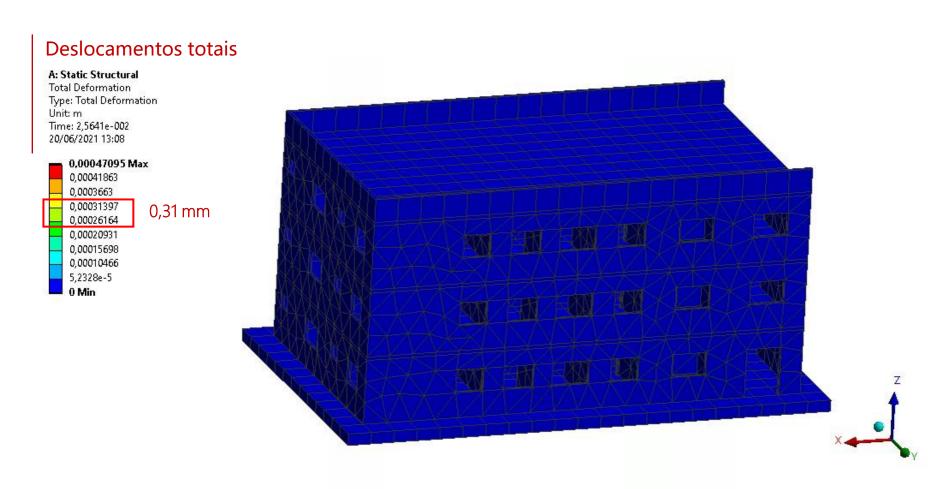



### Resultados da pesquisa

#### Estrutura estática

#### A: Static Structural

Static Structural Time: 1, s 20/06/2021 12:55

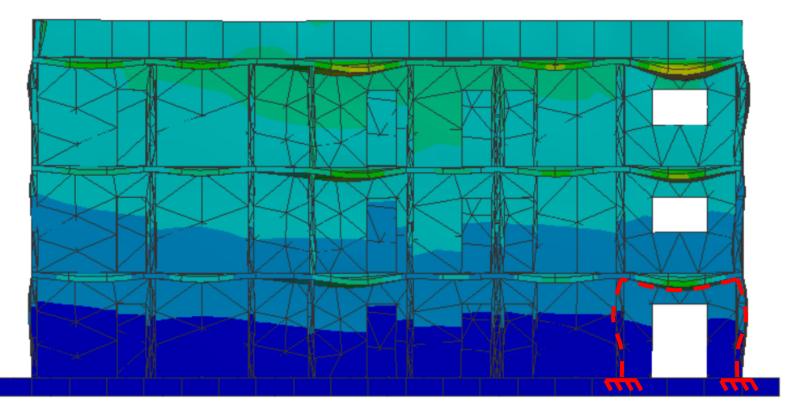

- A Gravidade terrestre padrão: 9,8066 m/s²
- B CV Edifícios residenciais: 2438,7 Pa
- CV Carga de ventos: 1266,5 Pa
- CP Revestimento de pisos: 1400, Pa
- 🔳 CV Vento Sucção: 949,91 Pa
- CP Telhado de fibrocimento: 560, Pa
- G Fuporte fixo







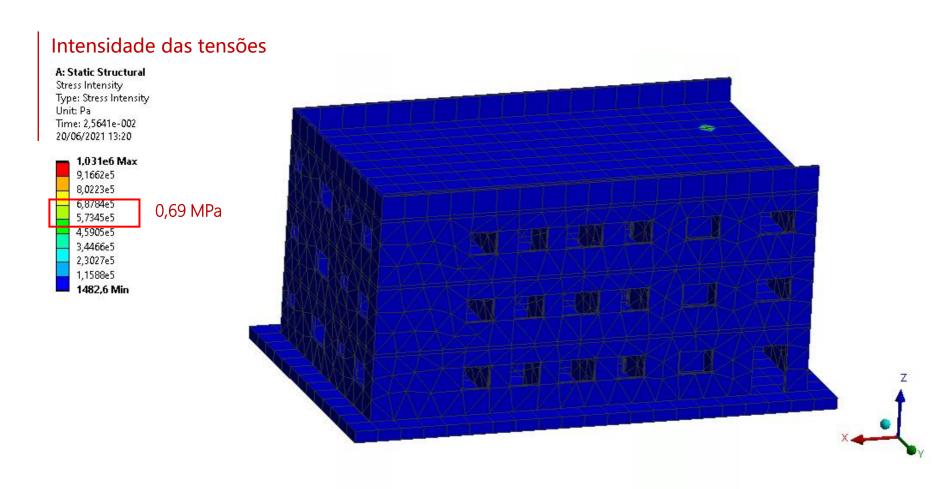
### Resultados da pesquisa







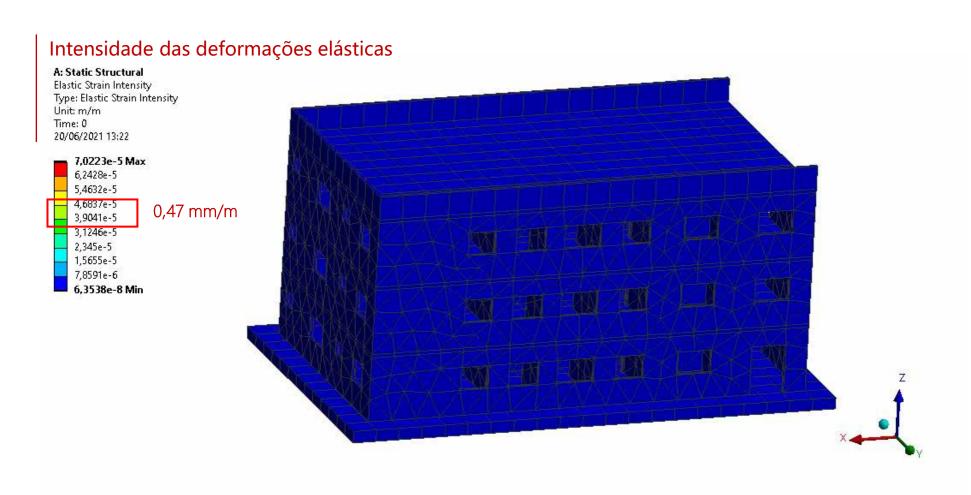

Resultados da pesquisa


Deslocamentos totais em seção transversal








### Resultados da pesquisa







### Resultados da pesquisa







### Resultados da pesquisa

#### Descrição

Tensões máximas nas paredes

Deslocamentos máximos

#### Valor máximo admitido

7,65 MPa

1,38 mm (L/800, segundo NBR 15575-2)

Valor máximo obtido na simulação

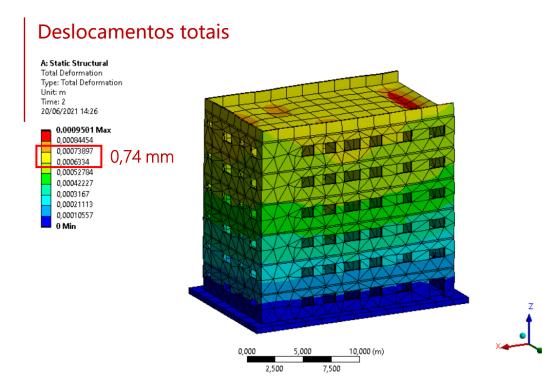
0,69 MPa

0,31 mm

9,2%

da tensão máxima resistente

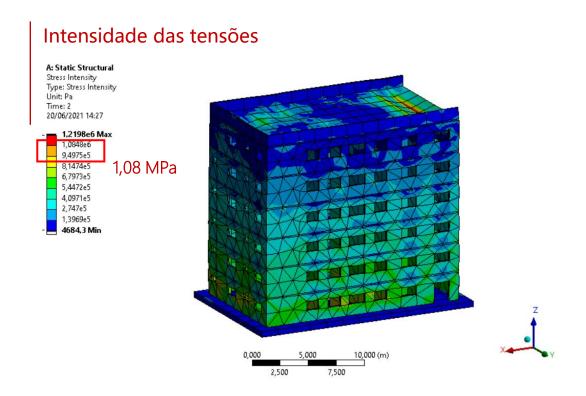
22,5%

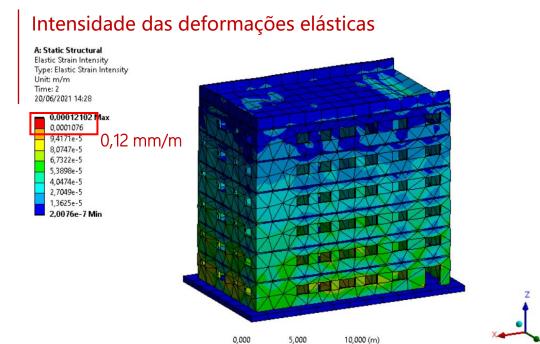

da deformação máxima admitida





### Resultados da pesquisa


### Estrutura estática A: Static Structural Static Structural Time: 2, s 20/06/2021 14:25 A Gravidade terrestre padrão: 9,8066 m/s² B CV - Edifícios residenciais: 2438,7 Pa CP - Revestimento de pisos: 1400, Pa D CP - Telhado de fibrocimento: 560. Pa 📘 CV - Vento Sucção: 949,91 Pa F CV - Carga de ventos: 1266,5 Pa G Fuporte fixo 10,000 (m) 2,500 7,500








### Resultados da pesquisa





2,500





Resultados da pesquisa (6 pavimentos)

#### Descrição

Tensões máximas nas paredes para 6 pavimentos

Deslocamentos máximos para 6 pavimentos

#### Valor máximo admitido

7,65 MPa

1,38 mm (L/800, segundo NBR 15575-2)

Valor máximo obtido na simulação

1,08 MPa

0,74 mm

14,1%

da tensão máxima resistente

53,6%

da deformação máxima admitida





Resultados da pesquisa

9,2%

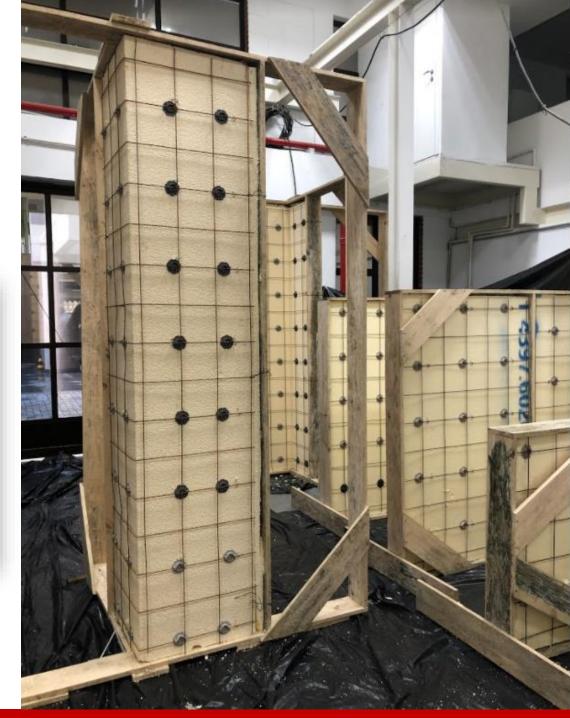
da tensão máxima resistente considerando 3 pavimentos

14,1%

da tensão máxima resistente considerando 6 pavimentos

| Resistência à<br>compressão da<br>argamassa (MPa) | Resistência equivalente<br>do sistema (MPa) | Resistência equivalente<br>do sistema minorada<br>(MPa) | Representatividade da<br>tensão resistente<br>(3 pavimentos) | Representatividade da<br>tensão resistente<br>(6 pavimentos) |
|---------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 25                                                | 10,7                                        | 7,6                                                     | 9,2%                                                         | 14,1%                                                        |
| 15                                                | 6,4                                         | 4,6                                                     | 15,0%                                                        | 26,6%                                                        |
| 5                                                 | 2,1                                         | 1,5                                                     | 45,1%                                                        | 79,7%                                                        |






**Ensaios laboratoriais** 

1 Recebimento e preparo dos painéis









**Ensaios laboratoriais** 

2 Projeção de argamassa







**Ensaios laboratoriais** 

3 | Segunda etapa de revestimento



4 Acabamento final





**Ensaios laboratoriais** 

5 Controle tecnológico e desforma









**Ensaios laboratoriais** 

6 Movimentação dos corpos de prova

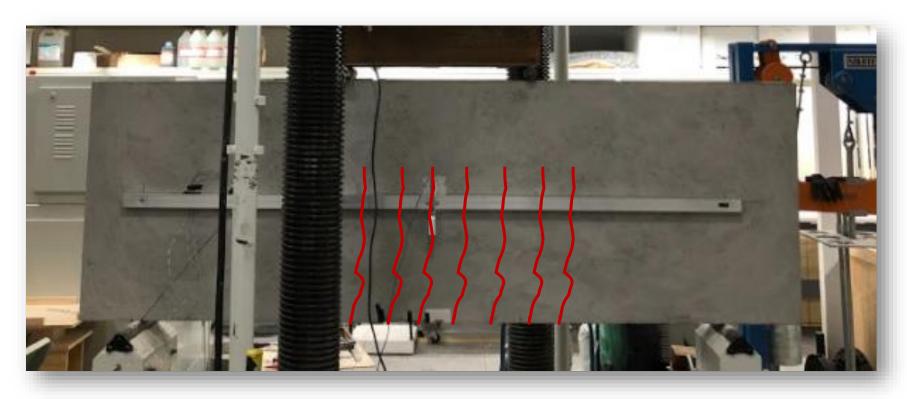


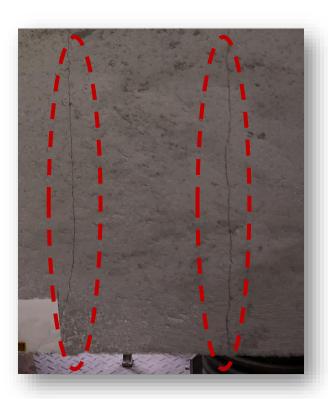




**Ensaios laboratoriais** 

7 Ensaio de resistência à tração na flexão




10 toneladas



**Ensaios laboratoriais** 





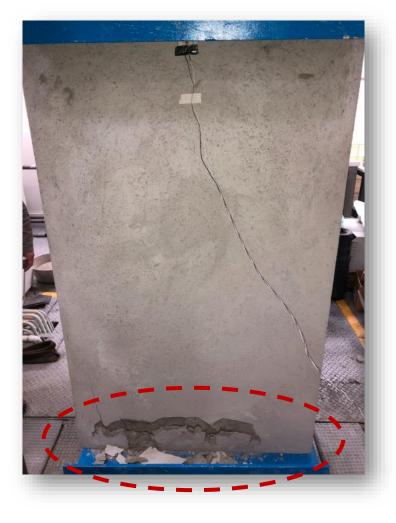


**Ensaios laboratoriais** 

Ensaio de resistência à compressão








20 toneladas



**Ensaios laboratoriais** 







**Ensaios laboratoriais** 

9 Monitoramento de deformações e deslocamentos







Resultados preliminares dos ensaios laboratoriais

| Descrição           | Carregamentos últimos | Suporte de carregamento  |
|---------------------|-----------------------|--------------------------|
| Tração com 4 pontos | 10 t                  | 2,07 MPa                 |
| Compressão          | 20 t                  | 15.873 kg/m <sup>1</sup> |



#### **Ensaios laboratoriais**

| Descrição              | Massa total (kg) |
|------------------------|------------------|
| Lajes do tipo          | 73.307,14        |
| Paredes do tipo        | 58.190,71        |
| Tipo = lajes + paredes | 131.497,85       |

| Tipologia          | Suporte de carregamento(kg/m¹) |
|--------------------|--------------------------------|
| Térreo + 2 (169 m) | 2.333,86                       |
| Térreo + 5 (169 m) | 4.668,56                       |
|                    |                                |

15.873 kg/m<sup>1</sup>

suporte do sistema

29,41%

do suporte máximo obtido em laboratório





## Análises de desempenho dos painéis de EPS

#### Resumo dos resultados



#### Desempenho térmico

Nível de desempenho térmico superior (NBR 15575-1)



#### Análise financeira

Redução de 7% no custo total da obra



#### Desempenho sustentável

Redução de 28% na emissão total de CO2



#### Análise de produtividade

Metade do tempo gasto

para executar as paredes estruturais



#### Desempenho estrutural

Redução de 40% no peso próprio do sistema de vedação

Resistência suficiente para mais que 2 pavimentos



## Agradecimentos



# Painéis de poliestireno expandido (EPS) revestidos com argamassa armada: Avaliação de desempenho

Trabalho de Conclusão de Curso Engenharia Civil Junho de 2021





Letícia Batista Araújo de Lima Matheus Nunes Moreira Rodolfo Cervelle Santos Thomas Hideki Kuninari

Prof. Ms. Fabiola Rago Beltrame